Eburicoic Acid, a Triterpenoid Compound from Antrodia camphorata, Displays Antidiabetic and Antihyperlipidemic Effects in Palmitate-Treated C2C12 Myotubes and in High-Fat Diet-Fed Mice

نویسندگان

  • Cheng-Hsiu Lin
  • Yueh-Hsiung Kuo
  • Chun-Ching Shih
چکیده

This study was designed to investigate the antidiabetic and antihyperlipidemic effects and mechanisms of eburicoic acid (TRR); one component of Antrodia camphorata in vitro and in an animal model for 14 weeks. Expression levels of membrane glucose transporter type 4 (GLUT4); phospho-5'-adenosine monophosphate-activated protein kinase (AMPK)/total AMPK; and phospho-Akt/total-Akt in insulin-resistant C2C12 myotube cells were significantly decreased by palmitate; and such decrease was prevented and restored by TRR at different concentrations. A group of control (CON) was on low-fat diet over a period of 14 weeks. Diabetic mice; after high-fat-diet (HFD) induction for 10 weeks; were randomly divided into six groups and were given once a day oral gavage doses of either TRR (at three dosage levels); fenofibrate (Feno) (at 0.25 g/kg body weight); metformin (Metf) (at 0.3 g/kg body weight); or vehicle (distilled water) (HF group) over a period of 4 weeks and still on HFD. Levels of glucose; triglyceride; free fatty acid (FFA); insulin; and leptin in blood were increased in 14-week HFD-fed mice as compared to the CON group; and the increases were prevented by TRR, Feno, or Metf as compared to the HF group. Moreover, HFD-induction displayed a decrease in circulating adiponectin levels, and the decrease was prevented by TRR, Feno, or Metf treatment. The overall effect of TRR is to decrease glucose and triglyceride levels and improved peripheral insulin sensitivity. Eburicoic acid, Feno, and Metf displayed both enhanced expression levels of phospho-AMPK and membrane expression levels of GLUT4 in the skeletal muscle of HFD-fed mice to facilitate glucose uptake with consequent enhanced hepatic expression levels of phospho-AMPK in the liver and phosphorylation of the transcription factor forkhead box protein O1 (FOXO1) but decreased messenger RNA (mRNA) of phosphenolpyruvate carboxykinase (PEPCK) to inhibit hepatic glucose production; resulting in lowered blood glucose levels. Moreover; TRR treatment increased hepatic expression levels of the peroxisome proliferator-activated receptor α (PPARα) to enhance fatty acid oxidation; but displayed a reduction in expressions of hepatic fatty acid synthase (FAS) but an increase in fatty acid oxidation PPARα coincident with a decrease in hepatic mRNA levels of sterol response element binding protein-1c (SREBP-1c); resulting in a decrease in blood triglycerides and amelioration of hepatic ballooning degeneration. Eburicoic acid-treated mice reduced adipose expression levels of lipogenic FAS and peroxisome proliferator-activated receptor γ (PPARγ) and led to decreased adipose lipid accumulation. The present findings demonstrated that TRR exhibits a beneficial therapeutic potential in the treatment of type 2 diabetes and hyperlipidemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptor α Expression and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

This study investigated the potential effects of dehydroeburicoic acid (TT), a triterpenoid compound from Antrodia camphorata, in vitro and examined the effects and mechanisms of TT on glucose and lipid homeostasis in high-fat-diet (HFD)-fed mice. The in vitro study examined the effects of a MeOH crude extract (CruE) of A. camphorata and Antcin K (AnK; the main constituent of fruiting body of t...

متن کامل

Hepatoprotective effects of eburicoic acid and dehydroeburicoic acid from Antrodia camphorata in a mouse model of acute hepatic injury.

The hepatoprotective effects of eburicoic acid (TR1) and dehydroeburicoic acid (TR2) from Antrodia camphorata (AC) against carbon tetrachloride (CCl4)-induced liver damage were investigated in mice. TR1 and TR2 was administered intraperitoneally (i.p.) for 7 days prior to the administration of CCl4. Pretreatment with TR1 and TR2 prevented the elevation of aspartate aminotransferase (AST), alani...

متن کامل

Telmisartan Improves Insulin Resistance of Skeletal Muscle Through Peroxisome Proliferator–Activated Receptor-δ Activation

The mechanisms of the improvement of glucose homeostasis through angiotensin receptor blockers are not fully elucidated in hypertensive patients. We investigated the effects of telmisartan on insulin signaling and glucose uptake in cultured myotubes and skeletal muscle from wild-type and muscle-specific peroxisome proliferator-activated receptor (PPAR) δ knockout (MCK-PPARδ(-/-)) mice. Telmisar...

متن کامل

Boehmeria nivea Stimulates Glucose Uptake by Activating Peroxisome Proliferator-Activated Receptor Gamma in C2C12 Cells and Improves Glucose Intolerance in Mice Fed a High-Fat Diet

We examined the antidiabetic property of Boehmeria nivea (L.) Gaud. Ethanolic extract of Boehmeria nivea (L.) Gaud. (EBN) increased the uptake of 2-[N-(nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose in C2C12 myotubes. To examine the mechanisms underlying EBN-mediated increase in glucose uptake, we examined the transcriptional activity and expression of peroxisome proliferator-activate...

متن کامل

Citrus junos Tanaka Peel Extract Exerts Antidiabetic Effects via AMPK and PPAR-γ both In Vitro and In Vivo in Mice Fed a High-Fat Diet

The antidiabetic effect of the Citrus junos Tanaka (also known as yuja or yuzu) was examined. Ethanol extract of yuja peel (YPEE) significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG) uptake in C2C12 myotubes. However, ethanol extract of yuja pulp (YpEE) and water extract of yuja peel (YPWE) or pulp (YpWE) did not stimulate glucose uptake. In additio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017